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LE'lTER TO THE EDITOR 

Trapped surfaces and the positivity of Bondi mass 

M Ludvigsent and J A G VickersS 
tDepartment of Mathematics, University of Canterbury, Christchurch, New Zealand 
$Department of Mathematics, University of York, Heslington, York YO1 5DD, England 

Received 11 June 1982 

Abstract. It is shown that the Bondi mass of an asymptotically flat space-time which 
satisfies the dominant energy condition and which contains a number of trapped surfaces 
is positive. 

In a recent letter (Ludvigsen and Vickers 1982) we showed that the Bondi mass of a 
large class of physically reasonable space-times is necessarily positive. In particular, 
we proved the following theorem. 

Theorem 1. Let A be an asymptotically flat space-time which satisfies the dominant 
energy condition. Let 4+ be future null infinity and let X be a non-singular null 
hypersurface which intersects 4' in a global space-like cross section S, and which 
is bounded in the past by a finite space-like cross section So. Then, if there exists a 
non-singular, simply connected, compact space-like hypersurface 9 with boundary 
So, the Bondi momentum Pa (S,) with respect to S, is future pointing. 

A similar result was also recently proved by Horowitz and Perry (1982). Neither 
of these results is readily applicable to singular or topologically non-trivial space-times 
such as those containing black holes. In this letter we overcome this difficulty by 
proving the following variation of theorem 1 which is directly applicable to such a 
situation. 

Theorem 2. Let A, X, S, and So be as in theorem 1. Then, if there exists a compact, 
space-like hypersurface 9 with outer boundary SO, and several inner boundaries Si 
( i  = 1 , 2 , ,  . . , N) which are trapped surfaces (see figure l ) ,  the Bondi momentum 
Pa(S,) with respect to S, is future pointing. 

We shall prove this theorem by means of spinor methods similar to those used by 
Witten (1981) in his proof of the positive energy theorem at space-like infinity. We 
shall, however, use two-spinors rather than four-spinors. 

The Bondi (Bondi et a1 1962) four-momentum P,(S,) of an asymptotically flat 
space-time is a four-vector function, defined on the space of all space-like cross 
sections (cuts) of 4', which lies in the Minkowski space of BMS translations T. If we 
let T = 9'639 where Y is the space of two spinors, then, on using the Penrose (1968) 
abstract index notation, we may write 

Pa = PAA' 
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Figure 1. The situation with two trapped surfaces is shown. The hypersurface 3 has 
outer boundary SO and inner boundaries SI and Sz. 

where the indices A and A' refer to Y and 9 respectively. In terms of the standard 
spin-coefficient notation based on a Bondi coordinate system (U, r, 5, f )  and associated 
spinor dyad field (oA, LA) (see, for example, Exton et a1 1969), the Bondi momentum 
with respect to the origin cut U = 0 may be written as 

J 

where the integral is performed over the U = 0 cut of 9+. CIA([, l )  is a regular spinor 
valued function lying in Y which has spin weight f and which satisfies 

aOoA = 0 ( 2 )  

where a. is the standard 'edth' operator of Newman and Penrose (1966). 
From the above relations we see that Pa is future pointing if and only if 

P A A ~ A ~ A ~ ' ~  0 

for an arbitrary spinor A A E 9, or, equivalently, that 

I&, A:):= --if (4; +a'&')A!h: dll2.O (3) 

for all regular spin weight 3 functions A! satisfying 

(4) 

In order to prove theorem 2 we start by considering the boundary 6'9 of the 
compact hypersurface 9. This consists of several disconnected components; the outer 
boundary So and N inner boundaries Si (i = 1, . . . , N). SO has topology S2 and since 
the inner boundaries are trapped surfaces they too have topology S2 (Gibbons 1972). 
Let v a  be the future pointing normal to 9, u a  the outgoing normal to So and the 
ingoing normal to Si (i = 1, . , , N), and ma  a complex null vector which lies entirely 
in 8 9 ,  where the vectors are normalised so that 

~v va =-?U ua =-mafia = 1. 

0 aoA 0 = 0. 

( 5 )  

v a = I a + n a ,  u a  z= 1" - n a  (6) 

l a  l a  
U ava = 0, 

Using these vectors we may construct a null tetrad system ( n  a,  I", ma,  rii ") on 8 9  where 
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and introduce a spinor dyad (OA, LA) (with O A L ~  = 1) in the neighbourhood of 8 9  
which is chosen so that on XZ we have 

If (U, r, 5, f )  is a Bondi type coordinate system in which X is given by U =constant, 
then we may use 5 and f to label the points of So. Furthermore La := V,u will be 
proportional to 1, on So. It will be convenient (although not strictly necessary) to 
choose the hypersurface such that 

1, = La. (9) 

This simplifies the junction conditions on So and can always be achieved by means 

Consider now the following integral over So 
of a suitable deformation. 

where 

and AA is some spinor field defined on 9. 
By writing out I(So,  AA) in terms of spin coefficients it may be seen that I(&, AA) 

depends only upon AA and derivatives of AA which are intrinsic to So; it is thus 
completely determined by specifying A. = A A O ~  and A 1  = AAL on SO. An important 
property of I(So,  AA) which we proved in our earlier letter (Ludvigsen and Vickers 
1982) is that 

A 

I(s=a, A Z ) P I ( S o ,  AA) (13) 

provided only that A. = A:. 

in such a way that 
We now show that for each choice of A; satisfying (4) it is possible to choose A l  

I(So,  AA) a 0. 

Let AA be a solution of the 'Witten equation' on 9, 

D ~ A ~  = o 
where 

D, =Va - ~ u ~ ( u ~ V ~ ) .  
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In terms of the GHP (Geroch et a1 1973) spin coefficient notation based on the 

d A o =  -2(aA1 +p'Ao) ,  (16) 

(17) 

where d := U "V,. 
By using the arguments of Parker and Taubes (1982) (adapted to the compact 

case) it may be shown that there exists a non-singular solution of (14) which satisfies 
the boundary condition A. = A on So and 

on Si (18) 

spinor dyad (OA, LA) we may write (14) on the boundary 82' as 

dA 1 = 2(a;\o + p A  I), 

a h  1 + p ' h o  = 0 (i = 1 , 2 , .  . . , N ) .  

We now consider the integrals over the inner boundaries 

I(Si, AA) := Fa* dZUb. 
fSz 

When equation (18) is satisfied these are given by 

I(& AA) = f ( p ' A o ~ o + p A l ~ l )  dR 
S, 

and are therefore positive by the trapped surface condition (8). 
Now by Gauss's theorem we have 

N 

I(S0, A A )  = I&, AA) + 5 VbF,, du" 
i = l  3 

(the boundary terms having different signs due to the choice of orientation of U"). 
As was shown in an earlier paper (Ludvigsen and Vickers 1981) the dominant 

energy condition together with the properties of the Witten equation make the second 
term on the right positive, while the first term is positive by equation (20). But by 
equation (13) we have I(&,, A:) a I ( S o ,  AA).  We have therefore shown that I(&, A o )  
is positive for all regular spin weight f functions satisfying doh: = 0, and thus that the 
Bondi four-momentum is future pointing. 

0 
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